MANCHESTER

SOLAR XENON IN GENESIS SILICON SAMPLES

Sarah Crowther & Jamie Gilmour School of Earth, Atmospheric and Environmental Sciences The University of Manchester

Gas Concentrations

UV Laser Ablation

- Ablate just the top layers of sample where solar wind is implanted
- Tripled Nd:YAG 355 nm
 - High power up to 400 mJ
 - Large beam ~ 9 mm diameter at laser
- Can extract gas by heating with 4 W
 - -400 mJ per pulse @ 10 Hz = 4 W
 - Try ablation @ 1 Hz

Plan Of Attack

- 1. Spot ablation
 - Test technique
 - Depth profile

CZ-Si 4.279 x 4.267 mm 0.02830 g

60457 – 1st spot

60457 – 2nd spot

CZ-Si 5.932 x 5.303 mm 0.03890 g

60462 – 1st spot

- 100mJ / pulse, 10 shots, 1 Hz
- Very first laser shot see mark on sample
 - Mark ~ 1 mm diameter
- Gas from 1st 10 shots ~ 10⁴ atoms
 - Approx what expected in 1 mm circle
- Very little gas in subsequent attempts
- Is the "surface contamination" really the solar wind?
- Too small to confirm ratios

60462 – 2nd spot

Plan Of Attack

- 1. Spot ablation
 - Test technique
 - Depth profile
- 2. Raster small area
 - Confirm whether solar wind

60462 – Raster 3 small areas

Plan Of Attack

- 1. Spot ablation
 - Test technique
 - Depth profile
- 2. Raster small area
 - Confirm whether solar wind
- 3. Raster whole sample
 - Determine ratios more precisely

CZ-Si 4.045 x 3.893 mm 0.02620 g

60473 - Raster

- 1st raster ~ 5 x 10⁵ atoms ¹³²Xe
 - ~ 4 times that expected from this area
- 2nd raster ~ 4 x 10⁴ atoms ¹³²Xe
- Why not solar, like small raster?
- Mixture of solar wind and background Xe
 - Extracted all solar wind
 - But also extracted too much background Xe
 - Ablated too deep

Plan Of Attack 2

- 4. Raster at lower laser power
 - Separate solar wind from air

CZ-Si 4.285 x 3.741 mm 0.2633 g

- Reduced laser power by factor of 10
 - Was 100 mJ/pulse
 - Now ~ 10 mJ/pulse
- Repeated rasters over whole sample
 - $-1^{st} = air$
 - -2^{nd} to $7^{th} \sim solar$
- No trend

- 2nd to 7th rasters identical within error

Plan Of Attack 2

- 4. Raster at lower laser power
 - Separate solar wind from air
- 5. Get all solar wind in 1 analysis
 - 1st raster to remove air
 - Same raster, but pulse ablation laser at 5 Hz
 - Could have also tried slower raster with laser still at 1 Hz

CZ-Si 5.039 x 4.825 mm 0.03815 g

Sum

Summary

- Solar Xe identified in Si targets
- Low power UV ablation successfully extracts implanted solar wind
 - Power density < 700 mJ cm⁻²
- High powers
 - "Dig" too deep
 - Also extract Xe intrinsic to Si