Measuring Hydrogen Fluences in the Genesis Collectors: A Progress Report

> Gary R. Huss University of Hawaii at Manoa Don Burnett Caltech Amy Jurewicz Arizona State University

Summary of Last Year's Presentation

- Can get reproducible data if we control instrument conditions and stay ~1.5 mm from the edge of sample or holder mask.
- Can detect extraction-field distortions with E-gun and by comparing H/C with CH/C₂. First-order corrections are possible.
 - Reported a beam-current dependence, but this was an artifact of our integration method.
- Standards did not agree with one another.

 \Rightarrow We estimated that measurements could be made with ~5% precision and accuracy (2 σ).

During the Past 12 Months

- Obtained a new standard from Los Alamos National Lab with a nominal H fluence of 1.8x10¹⁶/cm².
- Obtained new sample holders that better match the size of available GENESIS samples.
- Four DOS samples were allocated for measurement:
 - B/C array, E array, H array, L array
- Measured new and old standards to find a set that agree with each other.
- Revised measurement details to improve reproducibility and to better sample the shallow solar wind.

Analytical Conditions

- Sample chamber vacuum <5x10⁻¹⁰ torr.
- Contrast aperture 150 μm. Field aperture open.
- 100x100 μm raster, E-gate 40% (central 25x25 μm area).
- Dynamic transfer system on.
- Automatic beam centering in field aperture.
- Mass resolving power ~3000 ($M/\Delta M$).
- Electron gun used to degas the sample surface and to evaluate extraction field. Not used during measurement.
- Primary beam current 1, 2, and 4 nAmps.
- Measured ¹H, ¹²C, ¹²C¹H, ¹²C₂
 - 4 nA beam current: all on FC2 Faraday cup.
 - 1, 2nA beam currents: ¹H and ¹²CH on EM, ¹²C and ¹²C₂ on FC2

Standards

New DOS standard from Los Alamos National Lab.

- nominal H fluence:
- Previous standards:
 - Sandia-5, nominal fluence
 - SWRI, nominal fluence

1.5x10¹⁷/cm², 14-20 keV 1.8x10¹⁶/cm², 7.7 keV

1.8x10¹⁶/cm², 18 keV.

Sandia 5 Count-rate Profiles

Sandia 5¹H/¹²C ratio

LANL 6-08 Count-rate Profiles

LANL 6-08 ¹H/¹²C ratio

Compare Sandia 5 and LANL 6-08

Conditions

- 4 nA primary beam
- 100 mm raster
- Egate 40%
- MRP ~4000
- Detector FC2

 Nominal:
 LANL 6-08
 1.8×10^{16} /cm²

 Sandia-5
 1.5×10^{17} /cm²
 Ratio
 0.12

 Measured:
 LANL 6-08
 638.8 ± 65.0 Ratio

 Sandia-5
 2926.1 ± 33.2 Ratio

Minimizing Surface Transient Effects

Beam Current Dependence

Sensitivity vs Beam Current for H

What's next?

Solve the problem with standardization.

Standards

Previous DOS standards:

- Sandia-5, nominal fluence
 SWRI, nominal fluence
 LANL 6-08, nominal fluence
 Mew DOS standards:
 Kroko, nominal fluence
 Kroko, nominal fluence
 SWRI, nominal fluence
 LANL 6-08, nominal fluence
 - Kroko, nominal fluence
 - Kroko, nominal fluence

1.5x10¹⁷/cm², 14-20 keV 1.8x10¹⁶/cm², 7.7 keV 1.8x10¹⁶/cm², 18 keV

2x10¹⁵/cm², 15 keV 6x10¹⁵/cm², 15 keV

1.8x10¹⁶/cm², 7.7 keV 1.8x10¹⁶/cm², 18 keV 2x10¹⁵/cm², 15 keV 6x10¹⁵/cm², 15 keV

What's next?

- Solve the problem with standardization.
- Optimize measurement of the shallow portion of the implants.
- Make the measurements!