

Isotopic composition of nitrogen in Genesis target material

B. Marty¹, L. Zimmermann¹, P.G. Burnard¹, D.L. Burnett², V. Heber³, R. Wieler³, R.C. Wiens⁴

¹ CRPG-CNRS, Université de Nancy, France

² California Institute of Technology, Pasadena, USA

³ ETH Zürich, Switzerland

⁴ Los Alamos National Laboratory, USA

Laser (193 nm) ablation - static MS

Ozone cleaning (organics, brown stain...) at Open Univ. UK, thanks to S. Sestak & I.A. Franchi

•Static MS

- He, Ne, N, Ar abundances and isotopic ratios
- 26 months to decrease nitrogen procedural blanks to 3 x 10⁻¹³ mol N₂

• N blank < 10 % analyzed N

Nitrogen analyzed as N_2 : 28 and 29 on Faraday (FC) 29 and 30 on Multiplier (EM)

• Contributions of CO and hydrocarbons at these masses

• Purification of nitrogen through oxydation of CO and hydrocarbons (CuO trap, conversion to H_2O and CO_2 which are trapped in a cold trap just above liquid N_2 temp.)

 $\boldsymbol{\cdot}$ Mass resolution of 650 on EM : hydrocarbons resolved from N_2+CO

- Correction for residual CO using 29/30 ratios : 5.72 for CO, 544 for atm. $N_{\rm 2}$

For AuoS, 29/30 : 27-100, large correction
For gold cross arms, 29/30 > 400, correction small (few per mil)

Analysis of gold cross arm 69001.01 (last LPSC) : no evidence for light N in the modern solar wind

Since then, several developments....

We first used the Gloecker and Geiss (2007)'s 20 Ne/ 14 N ratio of 0.50, derived from Ulysses' coronal hole measurement. Probably too low (P. Bochsler): averages of 2 slow and fast regimes measurements (from Von Steiger, 2000, compilation) are ~40 % higher, and Reames (1995)'s SEP even 60 % higher. We adopt now 20 Ne/ 14 N = 1.14±0.23 from coronal abundances, consistent with in situ analysis : 1.24±0.30 from the ACE mission (Dan Reisenfeld)

Neon spot-analyzed at ETH Zürich by Heber et al. (2008) : laser spot size : 100 μm diameter In Nancy, lasered area were 4-6 mm^2

Mdf: mass-dependent fractionation assuming proportionality to $m^{-1/2}$

Mdf: mass-dependent fractionation assuming proportionality to m^{-1/2}

Nitrogen in SW as N⁵⁺ and N⁶⁺ , mean charge state : +5.5; m/q = 2.54 and 2.73 for ^{14}N and ^{15}N , respectively

Neon in SW as Ne^{8+} , m/q = 2.50 and 2.75 for ²⁰Ne and ²²Ne, respectively.

Same extent of isotope fractionation for ¹⁵N/¹⁴N and ²²Ne/²⁰Ne

Mixing between terrestrial N and ¹⁵N-depleted N

 $\delta^{15} N$ data corrected for concentrator fractionation; Only the SW fraction of N was corrected

Correction is between 0.2 and 3 per mil, cannot account for correlation (too small, goes in the other way)

Space Sci Rev DOI 10.1007/s11214-007-9179-1 Gold cross arm (GCA) analyzed for Ne amount and isotopes at Zurich : correction for elemental and isotopic fractionation

5 area with sizes ~5 $\rm mm^2$ rastered along the gold cross arm from the edge to the center