STATUS OF GENESIS Mo-Pt FOILS -Fighting with mud-

Kunihiko Nishiizumi Space Sciences Laboratory University of California, Berkeley

March 2009

Mo-Pt Foils Team Member

D. S. Burnett

A. J. G. Jurewicz, D. S. Woolum

A. L. Butterworth, K. C. Welten, A. J. Westphal M. W. Caffee

J. Hull L. Ochoa-Frongia Damian Sowers Chris Tom

Mo-Pt Foils Team Member

D. S. Burnett

A. J. G. Jurewicz, D. S. Woolum

A. L. Butterworth, K. C. Welten, A. J. Westphal M. W. Caffee

Alex Bixler

All foils have Utah soil contamination on the surface, but the amount is highly variable

Minimum requirement for decontamination of Utah dirt <1 mg over 8,000 cm² surface or

<100 ng/cm²

40391

Development of surface cleaning

- Cut 1-3 cm² Mo-SS or Mo-Pt foil
- Weigh foil by a microbalance (0.1 µg level)
- (Spread Utah dirt over the foil and dry)
- Weigh foil (+dirt)
- Apply chemical/physical treatment
- Weigh foil (measure decontamination of dirt)
- Measure Mo in solvent by atomic absorption spectrometer (1µg Mo/cm² \approx 1 nm Mo)

Development of surface cleaning

Test more than 70 reagents using more than 600 foils by March 2008

Additional ~500 foils since 2008 science meeting

Physical Cleaning Methods

 CO_2 Snow Replica methods Bubble Agitation Boiling Solvent Vacuum Cavitational Streaming (VCS) Supercritical Fluid (SCF): SC-CO₂ Megasonic vs. Ultrasonic **H₂ Hydrogenation**

H₂ Hydrogenation

Oxidized Mo surface was changed to less chemical reactivity

110 atmosphere (11 MPa or 1,600 psi) 1 day - 7 weeks How long?

Higher pressure?

Temperature: 20°C - 85°C

How higher temperature?

Affect to dirt?

Comparison of Mo removal by H_2O (60min)

Effect of Temperature

Based on Sloczynski, Journal of Solid State Chemistry (1995)

Note: H_2 pressures used in reference were ~1000 times lower than our experiments.

H₂ Hydrogenation

Vacuum Cavitational Streaming (VCS)

Hyperflo (Phoenix) Cavitation was very strong and rougher

Vacuum Cavitational Streaming (VCS)

Difficult to control cavitation So far our cavitation method was not strong enough to remove dirt Need more work

Supercritical Fluid SC-CO₂

Supercritical Fluid SC-CO₂

Liquid CO₂ SC-CO₂ No effect for Mo (MoO₃) surface Not strong enough to remove dirt Good for organic contamination

SCF + additive $SC-CO_2 + MeOH (20\%)$ Surfactant?

Need mixing SCF SCF + Megasonic?

Megasonic

Test 2 companies PCT systems Megasonic Sweeping Inc. Some Mo loss were observed but not consistent results.

470 kHz vs. 700-800 kHz? Higher frequency? Observed significant dirt removable

Next

Continue test H_2 , SCF, Megasonic, and ...

• Difficult to work at company (organic solvent, reproducibility)

Require system in our lab

• Need a mapping capable XRF for effective test and verification of cleanness

Vacuum Cavitational Streaming (VCS)

	Vp@25°C (mmHg)
H ₂ O	3.2
Methyl ethyl ketone (MEK)	90
Cyclohexane	100
Hexane	150
Chloroform	200
Acetone	250
Cyclopentane	320
Pentane	500